Conformal flattening and generalized entropies: an affine differential geometric approach

Atsumi Ohara University of Fukui

joint work with

Hiroshi Matsuzoe and Shun-ichi Amari

April 11 2014 @Fudan University
1. Introduction

- Purpose:
 A new way to construct the Legendre structure on the family of probability distributions
 - a Legendre pair of conjugate functions,
 generalized entropy, Massieu function
 - divergence
 - generalized exp. distributions (continuous case)
Introduction

- Important dualities in Information geometry
 \((\mathcal{M}, g, \nabla, \nabla^*)\)
- Duality of affine connections
 - a mutually dual pair: \((\nabla, \nabla^*)\) generally nonflat

\[Zg(X, Y) = g(\nabla_Z X, Y) + g(X, \nabla^*_Z Y) \]

\(X, Y, Z \in \mathcal{X}(\mathcal{M})\) statistical manifold
Introduction

- Important dualities in Information geometry
 \((\mathcal{M}, g, \nabla, \nabla^*)\)
 - Duality of affine connections
 - a mutually dual pair: \((\nabla, \nabla^*)\) generally nonflat
 \[Zg(X, Y) = g(\nabla_Z X, Y) + g(X, \nabla^*_Z Y)\]
 \(X, Y, Z \in X(\mathcal{M})\) statistical manifold
 - Legendre duality
 - a pair of conjugate functions: \((\psi, \varphi = \psi^*)\)
 - dually flat structure

BGS entropy, Fisher metric, KL divergence, exponential family etc.\(^4\)
Introduction

- Ideas from affine differential geometry
 - Affine immersion
 - 1-conformal flatness [Kurose94]

- Note: Approach using Hessian geometry [Shima07]
 Bregman divergence [Naudts02-04, Eguchi04]
Applications

- Various Legendre structure on generalized exp. family induced from gen. log func.
 - q-geometry, Tsallis statistics
 - Kappa log. [Kaniadakis]

- Voronoi partitions on statistical manifolds w.r.t. geometric divergences (non-Bregman type)
 - Efficient algorithm owing to conformality

- Gradient flows on the simplex
Examples: α-Voronoi partitions on S^2 [OMA12]

$\alpha = 0.6 \ (q=0.2)$ \hspace{1cm} $\alpha = -2 \ (q=1.5)$
2. Preliminaries

- **Def.** (*divergence or contrast function*)
 1) $\rho : \mathcal{M} \times \mathcal{M} \rightarrow \mathbb{R}$ is called a divergence if
 $$\rho(p, r) \geq 0, \ \forall p, r \in \mathcal{M}, \ \rho(p, r) = 0 \iff p = r$$
 2) ρ is said to induce (g, ∇, ∇^*) on \mathcal{M} if
 $$g(X, Y) = -\rho[X|Y],$$
 $$g(\nabla_X Y, Z) = -\rho[XY|Z], \ \ g(Y, \nabla^*_X Z) = -\rho[Y|XZ],$$
 where
 $$\rho[X_1 \cdots X_k|Y_1 \cdots Y_l](p) := (X_1)_p \cdots (X_k)_p(Y_1)_q \cdots (Y_l)_q \rho(p, q)|_{p=q}$$
 $p, q \in \mathcal{M}$ and $X_i, Y_j \in \mathcal{X}(\mathcal{M})$
\(\alpha\)-conformal equivalence (1) [Kurose 94]

- **Def.** Two stat. mfds \((M, g, \nabla)\) and \((M, g', \nabla')\) are \(\alpha\)-conf. equiv. if there exists a positive func. \(\phi\) and \(\alpha \in \mathbb{R}\) s.t.

\[
g'(X, Y) = \phi g(X, Y),
\]
\[
g(\nabla'_X Y, Z) = g(\nabla_X Y, Z) - \frac{1+\alpha}{2} d(\ln \phi)(Z)g(X, Y) + \frac{1-\alpha}{2} \{d(\ln \phi)(X)g(Y, Z) + d(\ln \phi)(Y)g(X, Z)\}
\]

- **Def.** A stat. mfd. \((M, g, \nabla)\) is said \(\alpha\)-conformally flat if there exists a flat \((M, g', \nabla')\) that is \(\alpha\)-conf. equiv. with \((M, g, \nabla)\).
α-conformal equivalence (2)

- **Prop. K** [Kurose 94]
 - A stat. mfd. is of const. curvtr. $\Rightarrow \pm 1$-conf. flat
 - (\mathcal{M}, g, ∇) and $(\mathcal{M}, g', \nabla')$ are α-conf. equiv.
 - $(\mathcal{M}, g, \nabla^*)$ and $(\mathcal{M}, g, \nabla'^*)$ are $-\alpha$-conf. equiv.
 - (\mathcal{M}, g, ∇) and $(\mathcal{M}, g', \nabla')$ are α-conf. equiv., and ρ induces (g, ∇, ∇^*)
 - $\Rightarrow \rho'(p, q) = \phi(q) \rho(p, q)$ induces (g', ∇', ∇'^*)

$\rho'(p, q)$ is called the *conformal divergence*.
3. Conformal flattening of ADG on S^n

- Probability simplex

$$S^n := \left\{ \mathbf{p} = (p_i) \middle| p_i > 0, \sum_{i=1}^{n+1} p_i = 1 \right\}$$

- Statistical manifold (S^n, ∇, h) realized by an affine immersion (f, ξ).
 - h: Riemannian metric
 - ∇: affine connection with its dual ∇^*
Affine immersion and a realized geometry

- Immersion $f : S^n \to \mathbb{R}^{n+1}$
- Hypersurface $f(S^n) \subset \mathbb{R}^{n+1}$
- Transversal vector field ξ

The affine immersion (f, ξ) realizes (S^n, ∇, h).

\[D_X f_*(Y) = f_*(\nabla_X Y) + h(X, Y)\xi \]

$X, Y \in \mathcal{X}(S^n)$
Assumptions

1) \((f, \xi)\): non-degenerate and equiaffine

2) \(f: S^n \ni p = (p_i) \mapsto x = (x^i) \in \mathbb{R}^{n+1}, \quad x^i = L(p_i), \; i = 1, \cdots, n + 1,\)

3) \(L: \mathbb{R}_+ \rightarrow \mathbb{R}, \quad L' > 0 \quad L'' < 0\): generalized log.
 - The inverse is denoted by \(E\), i.e. \(E \circ L = \text{id}\).
Assumptions

1) \((f, \xi)\) : non-degenerate and equiaffine

2) \(f : S^n \ni p = (p_i) \mapsto x = (x^i) \in \mathbb{R}^{n+1}, \quad x^i = L(p_i), \ i = 1, \cdots, n + 1,\)

3) \(L : \mathbb{R}_+ \to \mathbb{R}, \ L' > 0, \ L'' < 0\) : generalized log.
 - The inverse is denoted by \(E\), i.e. \(E \circ L = \text{id}\).

Note

- 1) implies \((S^n, \nabla, h)\) is 1-conf. flat stat. mfd.
 - [Kurose 94] (not necessarily of const. crvtr.)
- It holds that \(E'L' = 1\).
 - \(E' > 0, \ E'' > 0\).
- \(L'' < 0\) \(h\) can be positive definite.
Define a function on \mathbb{R}^{n+1} by

$$\Psi(x) := \sum_{i=1}^{n+1} E(x^i), \quad \text{convex w.r.t. } x$$

- $\frac{\partial \Psi}{\partial x^i} = E'(x^i) = \frac{1}{L'(p_i)}$,

- $f(S^n)$ is a level surface of $\Psi(x) = 1$.
Conormal vector ν (in the dual sp. of \mathbb{R}^{n+1})

\[
\nu_i(p) := \frac{1}{\Lambda} \frac{\partial \Psi}{\partial x^i} = \frac{1}{\Lambda(p)} E'(x_i) = \frac{1}{\Lambda(p)} \frac{1}{L'(p_i)},
\]

where

\[
\Lambda(p) := \sum_{i=1}^{n+1} \frac{\partial \Psi}{\partial x^i} \xi^i = \sum_{i=1}^{n+1} \frac{1}{L'(p_i)} \xi^i(p).
\]
Conormal vector ν (in the dual sp. of \mathbb{R}^{n+1})

\[\nu_i(p) := \frac{1}{\Lambda} \frac{\partial \Psi}{\partial x^i} = \frac{1}{\Lambda(p)} E'(x_i) = \frac{1}{\Lambda(p)} \frac{1}{L'(p_i)}, \]

where
\[\Lambda(p) := \sum_{i=1}^{n+1} \frac{\partial \Psi}{\partial x^i} \xi^i = \sum_{i=1}^{n+1} \frac{1}{L'(p_i)} \xi^i(p). \]

- **Note**
\[\xi_i < 0 \Rightarrow \Lambda(p) < 0, \quad \nu_i(p) < 0 \]

- **Properties**
\[\langle \nu, \xi \rangle = 1, \quad \langle \nu, f_*(X) \rangle = 0, \quad \forall X \in \mathcal{X}(S^n). \]
Geometric divergence [Kurose 94]

\[\rho(p, r) = \langle \nu(r), f(p) - f(r) \rangle = \sum_{i=1}^{n+1} \nu_i(r)(L(p_i) - L(r_i)) \]

\[= \frac{1}{\Lambda(r)} \sum_{i=1}^{n+1} \frac{L(p_i) - L(r_i)}{L'(r_i)}. \]

\((S^n, \nabla, h)\) is also induced from \(\rho\).
Geometric divergence [Kurose 94]

\[\rho(p, r) = \langle \nu(r), f(p) - f(r) \rangle = \sum_{i=1}^{n+1} \nu_i(r)(L(p_i) - L(r_i)) \]

\[= \frac{1}{\Lambda(r)} \sum_{i=1}^{n+1} \frac{L(p_i) - L(r_i)}{L'(r_i)}. \]

- (\(S^n, \nabla, h \)) is also induced from \(\rho \).

- **Conformal divergence of** \(\rho \)

\[\tilde{\rho}(p, r) = \sigma(r)\rho(p, r), \sigma(r) > 0 : \text{conf. factor} \]

- \(\tilde{\rho} \) defines another geometric structure (\(S^n, \tilde{\nabla}, \tilde{h} \))

 \textbf{conformal transformation} of (\(S^n, \nabla, h \))
Conformal flattening

- Conformal flattening = Normalization of the conormal vectors \(\nu(p) \) to the simplex.

- Geometrical explanation
Conformal flattening and a realized geometry

- Set $\sigma(r) = -1/Z(r)$ where $Z(p) := \sum_{i=1}^{n+1} \nu_i(p) = \frac{1}{\Lambda(p)}$
- $Z(p) < 0$: normalization term
Conformal flattening and a realized geometry

- Set \(\sigma(r) = -1/Z(r) \) where \(Z(p) := \sum_{i=1}^{n+1} \nu_i(p) = \frac{1}{\Lambda(p)} \)

\(Z(p) < 0 \): normalization term

Prop. The structure \((S^n, \tilde{\nabla}, \tilde{h})\) induced from the divergence:

\[\tilde{\rho}(p, r) = -\frac{1}{Z(r)} \rho(p, r), \]

is dually flat.

Further, \(\tilde{\rho} \) is a **canonical** divergence, i.e.,

\[\tilde{\rho}(p, r) = \psi(\theta) + \varphi(\eta) - \sum_{i=1}^{n} \theta^i \eta_i, \]

\[\varphi = \psi^* \]
Proposition (ctd.)

where

\[
\begin{align*}
\theta^i(p) &= x^i(p) - x^{n+1}(p) = L(p_i) - L(p_{n+1}), & i = 1, \ldots, n \\
\eta_i(p) &= P_i(p) := \frac{\nu_i(p)}{Z(p)}, & i = 1, \ldots, n \\
\psi(p) &= -x_{n+1}(p) = -L(p_{n+1}) \\
\varphi(p) &= \frac{1}{Z(p)} \sum_{i=1}^{n+1} \nu_i(p)x^i(p) = \sum_{i=1}^{n+1} P_i(p)L(p_i).
\end{align*}
\]
Proposition (ctd.)

Where

\[\theta^i(p) = x^i(p) - x^{n+1}(p) = L(p_i) - L(p_{n+1}), \quad i = 1, \ldots, n \]

\[\eta_i(p) = P_i(p) := \frac{\nu_i(p)}{Z(p)}, \quad i = 1, \ldots, n \]

\[\psi(p) = -x_{n+1}(p) = -L(p_{n+1}) \]

\[\varphi(p) = \frac{1}{Z(p)} \sum_{i=1}^{n+1} \nu_i(p)x^i(p) = \sum_{i=1}^{n+1} P_i(p)L(p_i). \]

- (gen. entropy)

- (gen. escort prob.)

- (gen. Massieu function)

- (gen. entropy)

\[P_i(p) = \frac{E'(x_i)}{\sum_{k=1}^{n+1} E'(x_k)} \]
Remark 1

- When $L = \log$, it recovers the standard IG, i.e.,
 $$(\mathcal{S}^n, \tilde{\nabla}, \tilde{h}) = (\mathcal{S}^n, \nabla^{(e)}, g^F)$$
 and $\tilde{\rho}$ is KL divergence.

- Voronoi partition on \mathcal{S}^n w.r.t. ρ
 - Easy to compute via the standard algorithm using the potential ψ.

Summary of our approach

1. Start with a generalized logarithmic function L and the probability simplex S^n.

2. Affine immersion realizes a 1-conformally flat geometry (S^n, ∇, \bar{h}). (not dually flat, generally)

3. Conformal flattening of (S^n, ∇, \bar{h}) realizes a dually flat geometry $(S^n, \tilde{\nabla}, \tilde{h})$.
 - The Legendre duality is automatically established.
Example: q-geometry

\[
L(t) := \frac{1}{1-q} t^{1-q}, \quad x^i(p) = \frac{1}{1-q} (p_i)^{1-q}
\]

\[
\xi^i(p) = -q(1-q)x^i(p)
\]

realizes $(S^n, \nabla^{(\alpha)}, g^F)$, $q = (1+\alpha)/2$. α-geometry

Fisher metric, constant curvature

\[
R^{(\alpha)}(X,Y)Z = \kappa \{ g(Y,Z)X - g(X,Z)Y \}
\]

\[
\kappa = (1 - \alpha^2)/4 = q(1 - q)
\]
Example: q-geometry

\[
L(t) := \frac{1}{1-q} t^{1-q}, \quad x^i(p) = \frac{1}{1-q} (p_i)^{1-q} \\
\xi^i(p) = -q(1 - q)x^i(p)
\]

affine immersion

realizes \((S^n, \nabla^{(\alpha)}, g^F), q = (1 + \alpha)/2\).

\(\alpha\)-geometry

\[
\Psi(x) = \sum_{i=1}^{n+1} \left((1 - q)x^i \right)^{1/(1-q)}, \quad \Lambda(p) = -q, \quad (constant)
\]

conformal flattening

\[
\nu_i(p) = -\frac{1}{q} (p_i)^q, \quad \frac{1}{Z(p)} = \frac{q}{\sum_{k=1}^{n+1} (p_i)^q}
\]

conormal vec. & conf. factor

\[
exp_q(x) := (1 + (1 - q)x)^{1/(1-q)}
\]
Example: q-geometry

\[
L(t) := \frac{1}{1 - q} t^{1-q}, \quad x^i(p) = \frac{1}{1 - q} (p_i)^{1-q} \]

affine immersion

\[
\xi^i(p) = -q(1 - q)x^i(p) \]

realizes $(S^n, \nabla^{(\alpha)}, g^F)$, $q = (1 + \alpha)/2$. α-geometry

\[
\Psi(x) = \sum_{i=1}^{n+1} ((1 - q)x^i)^{1/1-q}, \quad \Lambda(p) = -q, \quad \text{(constant)}
\]

conformal flattening

\[
\nu_i(p) = -\frac{1}{q} (p_i)^q, \quad -\frac{1}{Z(p)} = \frac{q}{\sum_{k=1}^{n+1} (p_i)^q}
\]

conormal vec. & conf. factor

\[
\eta_i = \frac{(p_i)^q}{\sum_{k=1}^{n+1} (p_k)^q}, \quad \theta^i = \frac{1}{1 - q} (p_i)^{1-q} - \frac{1}{1 - q} (p_{n+1})^{1-q} = \ln_q(p_i) - \psi(p)
\]

\[
\psi(p) = -\ln_q(p_{n+1}), \quad \varphi(p) = \ln_q\left(\frac{1}{\exp_q(S_q(p))}\right) = -S^N_q
\]
Remark 2

- The choice of ξ does not affect on the obtained flattened structure $(S^n, \tilde{\nabla}, \tilde{h})$.

- $(S^n, \tilde{\nabla}, \tilde{h})$ is 1-conformally equivalent with (S^n, ∇, h).

\[
\tilde{h} = -\frac{1}{Z} h, \quad \text{conformal}
\]

\[
\nabla^* \sim \tilde{\nabla}^* \quad \text{projectively equivalent}
\]
4. Gradient flow w.r.t. \((\mathcal{S}^n, \nabla, \tilde{h})\)

- One of the fundamental flows
 - Relation with the H–theorem

- The Riemannian metric \(\tilde{h}\) is extended as a diagonal form on \(\mathbb{R}_{++}^{n+1}\).

\[
\tilde{h}_{ii}(p) = -\frac{1}{Z(p)\Lambda(p)} \frac{L''(p_i)}{L'(p_i)}, \quad \tilde{h}_{ij} = 0
\]

- \(\phi(x) := \frac{L'(x)}{L''(x)}\)
\(V(p)\): a function on \(\mathbb{R}_+^{n+1}\)

\(f_i(p)\):
\[
f_i = \frac{\partial V}{\partial p_i}, \quad i = 1, \cdots, n + 1,
\]

gradient flow on \(S^n\) w.r.t. \(\tilde{h}\) that maximizes \(V(p)\)
(Cf. [Harper 11])

\[
\dot{p}_i = -Z(p)\Lambda(p)\phi(p_i)(f_i(p) - \bar{f}_\phi(p)) \quad \text{(GF)}
\]

\[
\bar{f}_\phi(p) := \sum_{i=1}^{n+1} \tilde{\phi}(p_i) f_i(p), \quad \tilde{\phi}(p_i) := \phi(p_i) / \sum_{k=1}^{n+1} \phi(p_k)
\]
Special case: $L(t) = t^{1-q}/(1 - q)$

- q-geometry $(S^n, \tilde{\nabla}, \tilde{h})$ (previous example)

$$
\phi(t) = -\frac{t}{q} \quad , \quad \tilde{h}(p) = -\frac{1}{Z(p)}g^F(p)
$$

g^F: Fisher (Shahshahani) metric
Special case:
\[L(t) = t^{1-q}/(1-q) \]

- \(q \)-geometry \((S^n, \tilde{\nabla}, \tilde{h})\) (previous example)
 \[\phi(t) = -\frac{t}{q}, \quad \tilde{h}(p) = -\frac{1}{Z(p)}g^F(p) \]

 \(g^F \): Fisher (Shahshahani) metric

- Gradient flow (GF) for \(q \)-geometry
 \[\dot{p}_i = -Z(p)p_i(f_i(p) - \bar{f}(p)), \quad \bar{f}(p) := \sum_{i=1}^{n+1} p_i f_i(p) \]

- Cf. the replicator equation \((q=1)\)
 \[\dot{p}_i = p_i(f_i(p) - \bar{f}(p)) \]
Prop. For each $q > 0$, the gradient flow (GF) for the q-geometry traces the same trajectory with the replicator equation ($q = 1$), but the different velocity by the conformal factor $-Z(p)$.
For nonintegrable f_i

- **Assumptions:**
 1) $f_i(p) := \frac{L''(p_i)}{(L'(p_i))^2} \sum_{j=1}^{n+1} a_{ij} P_j(p), \quad a_{ij} = -a_{ji}$
 2) The (GF) has an equilibrium r in S^n.

- **Prop.** The (GF) conserves $\tilde{\rho}(p, r)$. The first integral

- **Rem.** Cf. [Tokita 04] for the case $L = \log$.

References

- J. Naudts, Reviews in Mathematical Physics, 16, 6, 809-822 (2004).
Thank you for your attention.